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Biomass is an important component of the plant phenomics, and the existing methods for biomass
estimation for individual plants are either destructive or lack accuracy. In this study, a hyperspectral
imaging system was developed for the accurate prediction of the above-ground biomass of individual
rice plants in the visible and near-infrared spectral region. First, the structure of the system and the
influence of various parameters on the camera acquisition speed were established. Then the system
was used to image 152 rice plants, which selected from the rice mini-core collection, in two stages,
the tillering to elongation (T-E) stage and the booting to heading (B-H) stage. Several variables were
extracted from the images. Following, linear stepwise regression analysis and 5-fold cross-validation
were used to select effective variables for model construction and test the stability of the model, re-
spectively. For the T-E stage, the R2 value was 0.940 for the fresh weight (FW) and 0.935 for the dry
weight (DW). For the B-H stage, the R2 value was 0.891 for the FW and 0.783 for the DW. More-
over, estimations of the biomass using visible light images were also calculated. These comparisons
showed that hyperspectral imaging performed better than the visible light imaging. Therefore, this
study provides not only a stable hyperspectral imaging platform but also an accurate and nondestruc-
tive method for the prediction of biomass for individual rice plants. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4818918]

I. INTRODUCTION

Rice is the staple food for much of the world’s
population.1, 2 Considering the growing needs of the world
population, increasing crop yields is one of the main goals
of research into the rice plant. Biomass is an important com-
ponent of the plant phenomics and is important for the cal-
culation of the basis growth rate and production.3 The above-
ground fresh weight (FW) and dry weight (DW) are methods
for accurately measuring biomass in the studies of individual
plants.

Traditional methods of measuring the FW and DW are
destructive, time-consuming, and labor-intensive, so they are
not suitable for large-scale phenotyping experiments. More-
over, it is impossible to take a series of measurement on the
same plant at different points during its life cycle.4 So re-
searchers came up with several nondestructive methods for
measuring biomass, such as visible light imaging and spec-
tral imaging. Golzarian et al.4 proposed a biomass estimation
method for barley and wheat using the sum of the projected
areas of three orthogonal views and the plant age. However,
this method did not distinguish between the different organs
of the plant. Conversely, the spectral reflectance of visible and

a)Author to whom correspondence should be addressed. Electronic mail:
qianliu@mail.hust.edu.cn. Tel.: +86 27 87792033. Fax: +86 27 87792034.

near-infrared wavelengths is closely related to the produce
indices that are sensitive to biochemical and biophysical vari-
ations in vegetation.5, 6 The vegetation index is a popular indi-
cator for predicting biomass in the field of remote sensing,7–10

but it is primarily used to predict biomass over large areas
in the field of remote sensing and cannot fully exploit the
rich information of hyperspectral data. In general, spectral
methods use multispectral imaging10 or point sampling with
a spectroradiometer.7

Hyperspectral imaging is an emerging and nondestruc-
tive technology that can acquire spectral and spatial infor-
mation simultaneously. Compared with visible light imaging
and multispectral imaging, hyperspectral imaging has a high
spectral resolution and has become a powerful tool in many
fields of agricultural research.11 Hyperspectral imaging sys-
tems (HIS) have been used in the characterization of vegeta-
tion spectral features,12 dry matter yield predictions,13 the in-
spection of poultry carcasses,14 the early detection of spoilage
in mandarins,15 and the prediction of moisture content in de-
hydrated prawns.16 To the best of our knowledge, there is
no hyperspectral imaging system capable of predicting the
biomass of individual rice plants. To measure the biomass of
individual rice plants nondestructively and more accurately,
we have developed a HIS to predict the above-ground biomass
of individual rice plants.
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FIG. 1. Diagram of the HIS (a), the internal optical path (b), and the hyper-
spectral camera field of view (c).

II. SYSTEM DESCRIPTION

A. Hardware design

The HIS developed for this study consisted of a hy-
perspectral camera, a halogen lamp, a translation stage, and
a computer (Fig. 1(a)). The hyperspectral camera consisted
of an imaging spectrograph (HyperspecTM VNIR, Headwall
Photonics, USA), an EMCCD sensor (Luca-R, Andor Tech-
nology, UK), and an objective lens (23 mm, Schneider Op-
tics, Hauppauge, USA). The spectral range was 400–1000 nm
and the spectral resolution was 3.2 nm. The slit width was
25 μm. The line-scan orientation was perpendicular to the slit
(Fig. 1(a)). The incoming light was dispersed by the optical
grating, so the resulting images included both spectral and
spatial information (Fig. 1(b)). The size of the EMCCD was
1004 × 1002 pixels, and the pixel size was 8 × 8 (μm2). The
halogen lamp (380–1700 nm, Headwall Hyperspec Starter
Kit-VNIR, USA) was a line source next to the camera. The
maximum stroke of the translation stage (BHMS02-50A, Bo-
hongzhida, China) was 500 mm. The speed was adjustable

according to the size of the object distance and the camera
acquisition speed, which is discussed in Sec. II B. A com-
puter equipped with 2.96 GB RAM and an Intel Core CPU
(2.8 GHz) was used for system control and data analysis.
To increase the accuracy of background separation from the
plant, a blue backdrop was used, and the system was operated
in a darkroom.

To ensure a full scan of a potted rice plant for the tiller-
ing to elongation (T-E) stage and the booting to heading (B-H)
stage, the field of view (FOV) needed to be 1.0 m (Fig. 1(c)).
So the working distance was set to 2.9 m (calculated using
Eq. (1)). The instantaneous field of view (IFOV, defined by
Eq. (2)), which was equivalent to the width of one pixel cor-
responding to the working plane, was 1.0 mm. Thus, if the
acquired image needed to be undeformed for later analysis,
the translation stage could be moved to the next 1.0 mm po-
sition when the camera finished one line scan. The slit-width
field of view (slit FOV, defined by Eq. (3)) was 3.1 mm

Working distance = f × H

h
, (1)

IFOV = H

Nh

, (2)

Slit FOV = slit width

pixel size width
× IFOV, (3)

where f represents the focal length of the camera, H repre-
sents the plant height, h represents the height of the EMCCD,
and Nh represents the number of EMCCD pixels in the height
orientation.

B. Software design

1. System control

The software possessed three major parts: a preparation
unit, an acquisition unit, and a saving unit (Fig. 2). The Lab-
view 8.6 (National Instruments, USA) was used to control the
system. The operating procedure included the following steps.
(1) The camera was initialized. (2) The temperature was set,
and the cooler was opened. (3) The current dark data were
saved and denoted as Ib. (4) The whiteboard data were saved
and denoted as Iw. (5) The kinetics number and the kinetics
time were set. (6) The memory was cleared before acquisition.
(7) The acquisition was started (Fig. 3), and the translation
stage was moved uniformly. The header file was generated at
this time. The header file contained the acquisition time, slit
width, data length, acquisition frames, wavelength distribu-
tion, and data type, so other software, such as Environment
for Visualizing Images (Exelis Visual Information Solutions,
USA), could read the data. (8) Subsequently, the acquisition
data were stored in a binary data stream. If the acquisition did
end, then the translation stage would go back to zero. If the
raw data acquired by the camera were recorded as I0, the data
saved in the binary file were I (as defined by Eq. (4)). The
data of the binary file were thus spectral reflectance. (9) After
saving data from one plant, acquisition would start at step (6)
if a new plant were to be measured. Otherwise, the program
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FIG. 2. Diagram of control and data acquisition for the HIS.

would stop

I = I0 − Ib

Iw − Ib

, (4)

where I0 indicates the raw data, Ib indicates the dark current
data, and Iw indicates the whiteboard data.

2. Settings for main parameters

For the system control and data acquisition depicted in
Fig. 2, the parameters image read mode, trigger mode, image
size, exposure time, acquisition mode, accumulation time, ki-
netics number, kinetics time, shutter time, and shutter mode
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FIG. 3. Timing diagram for camera acquisition.

were set. Of these, image size, exposure time, accumulation
number, and kinetic number affected the camera acquisition
speed. The image size included hbin and vbin. Hbin con-
trolled the image height, and vbin controlled the number of
wavelengths (Eqs. (5) and (6)). Higher values of hbin and vbin
resulted in better signal-to-noise ratios. These settings would
lower the spatial and spectral resolution, however. Because
the slit-width FOV was 3.1 mm and the IFOV was 1 mm,
the minimum value of vbin was 3. The accumulation number
represented the number of repetitions of each frame (Fig. 3),
which implied that the signal-to-noise ratio performance im-
proved as the values increased, while the acquisition speed
became slower. The camera acquisition time was equivalent
to the kinetics time plus the kinetics number, and the kinetics
time was equal to the accumulation time plus the accumula-
tion number. The settings of the main parameters are shown
in Table I

Plant image size = [round(1004/hbin)] × (kinetics number),

(5)

Wavelength number = round (750/vbin), (6)

where round represents rounding to the nearest integer, and
750 represents the actual available pixel rows in the EMCCD.

TABLE I. The settings of the main parameters.

Parameters Value

Temperature −19 ◦C
Image read mode Image
Trigger mode Internal
Hbin 1
Vbin 4
Exposure time 50 ms
Acquisition mode Kinetics
Accumulation number 3
Accumulation time 100 ms
Kinetics number According to the plant width
Kinetics time 300 ms
Shutter mode Auto shutter
Shutter time 30 ms

3. Image processing and variables extraction

The binary file was a data stream, as shown in Fig. 4,
and its internal format contained the first wavelength of the
first line, followed by the second wavelength of the first line,
interleaved up to the 188th wavelength of the first line. Sub-
sequent lines for each wavelength were stored in a similar
fashion. In this data stream, the data had to be re-allocated to
reconstruct images. In agreement with the characteristics of
the hyperspectral image data, the data from this stream could
be extracted to form a three-dimensional matrix (λ, h, w),
where λ represented the number of wavelengths (correspond-
ing to Eq. (6)), h represented the height of the image (corre-
sponding to the round (1004/vbin) of Eq. (5)), and w was the
kinetics number (Table I), representing the number of frames.

After 188 images were extracted, the following process
was to extract the variables from the images. The main steps
of this process were as follows (Fig. 5). (1) In the data of the
orientation of 0◦, a wavelength with the largest difference be-
tween the background and foreground was chosen (721 nm
in this study), and the OTSU algorithm was then used to ex-
tract the plant region of interest (ROI) from the image of this
wavelength. (2) The ROI was applied to all 188 images of
the different wavelengths. (3) We then calculated the area (S),
the total reflectance of the plant ROI (T1 − T188, defined by
Eq. (7)), the average reflectance of the plant ROI (A1

− A188, defined by Eq. (8)), the first derivative of the total
reflectance of the plant ROI (dT1 − dT188), the second deriva-
tive of the total reflectance of the plant ROI (ddT1 − ddT188),
the first derivative of the average reflectance of the plant ROI
(dA1 − dA188), and the second derivative of the average re-
flectance of the plant ROI (ddA1 − ddA188) for the 188 im-
ages obtained from step (2). (4) Steps (1), (2), and (3) were
repeated with the data of the orientation of 90◦. (5) Finally,
every variable extracted from the rice plant was to take the
average of the corresponding variable at the orientation of 0◦

and 90◦. Therefore, each rice plant had 1129 variables

Tn =
∑

(i,j )∈ROI

R(n,i,j ), (7)

An = Tn

S
, (8)
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FIG. 4. The format of the binary data stream.

where n indicates the serial number of the 188 images,
Tn indicates the total reflectance of the plant ROI for the
nth image, An indicates the average reflectance of the plant
ROI for the nth image, and R(n, i, j) indicates the re-
flectance of the point with the coordinate (i, j) for the nth
image.

III. ABOVE-GROUND BIOMASS PREDICTION
OF POTTED RICE

A. Sample preparation

The rice samples were randomly selected from the rice
mini-core collection. We chose 152 cultivars, with one pot for

FIG. 5. A diagram of image segmentation and variable extraction.
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each cultivar; 76 pots for the T-E stage and 76 pots for the
B-H stage.

At each harvest time, 76 randomly selected pots were im-
aged. Then, the potted rice was harvest to measure the FW
and DW with an electronic balance. For the T-E stage, the
FW varied between 5.45 g and 85.27 g, and the DW varied
between 1.01 g and 17.74 g. For the B-H stage, the FW varied
between 52.41 g and 249.92 g, and the DW varied between
8.33 g and 52.17 g. This high diversity in the FW and DW
was due to the diversity of cultivars and ensured the validity
of the experimental results.

B. Selection of effective independent variables
for prediction

After 1129 variables were obtained, linear stepwise re-
gression analysis was used to choose a limited number of
variables that mapped with the biomass. Previous studies have
demonstrated that fewer effective wavelengths can be equal to
or better than a full spread of wavelengths because they con-
tain information relevant to the prediction.17

Linear stepwise regression analysis was used when many
independent variables had little effect on the dependent vari-
ables and some were not completely independent of each
other. The purpose of this process was to select effective in-
dependent variables for the model and to establish an optimal
regression model. Considering the number of samples and
the stability of the model, the top four variables were taken
as effective independent variables, and other variables were
ignored.

C. Model verification

The cross-validation technique was used to measure the
estimation error of a predictive model and to assess the predic-
tion error.18 Cross-validation has been a very robust method.
The cross-validation error decreased if only the additional in-
dependent variables improved the model prediction for one
dataset. The 5-fold cross-validation was used in this study
and repeated 10 times to avoid randomicity for grouping. The
final step was to average the data from the 10 repeats. Finally,
the average R2 of the modeling set, the mean absolute per-
centage error (MAPE, defined by Eq. (9)), and the root-mean-
square error (RSME, defined by Eq. (10)) of the prediction set
were obtained

MAPE = 1

n
×

n∑
i=1

∣∣∣∣
Yi − yi

Yi

∣∣∣∣ × 100%, (9)

RMSE =

√√√√√
n∑

i=1
(Yi − yi)2

n − 1
, (10)

where Yi indicates the actual value, yi indicates the prediction
value, and n indicates the numbers of samples.

FIG. 6. (a)–(d) The performance of different parameters impacted the
acquisition speed.

IV. RESULTS AND DISCUSSION

A. Camera acquisition speed performance

Fig. 6 shows the impact of the exposure time, hbin, vbin,
and accumulation number on the camera acquisition speed.
As observed from Fig. 6, the exposure time had the most ob-
vious impact on the acquisition speed. Hbin had no effect on
the acquisition speed, and vbin had a limited impact on the ac-
quisition speed compared with the exposure time. The shorter
exposure times permitted faster acquisition speeds. However,
if the exposure time was set to be too short, then the quality of
the acquired image deteriorated. Considering the acquisition
speed and image quality, the appropriate parameters were set
to collect data (Table I).

B. Spectral features of potted rice plants

Fig. 7 shows the spectral reflectance from the hyperspec-
tral images of the whole rice plant. The actual original spec-
tral range of the system was 400–1000 nm, but the camera
was more sensitive to the near-infrared region. Additionally,
the region between 400 and 470 nm had a relatively high noise
level. Therefore, the data from 400 to 470 nm were removed.
The trends for the total reflectance (Figs. 7(a) and 7(g)) and
the average reflectance (Figs. 7(b) and 7(h)) curves of the
different cultivars were similar in the same period, except
the differences among the total reflectance of different vari-
eties were more obvious than differences among the average
reflectance of different varieties. For the same stage, the
relationship among the total reflectance curves of different
varieties differed from the relationship among the average re-
flectance curves of different varieties. This result may indi-
cate that the differences among the different varieties could
not be explained by just the area. The total reflectance of the
B-H stage was larger than the T-E stage, perhaps because
there were more new leaves growing on the plant.
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FIG. 7. (a)–(l) Spectral reflectance from the hyperspectral images of the whole rice plant. The dashed lines represent the effective independent variables.

C. Effective independent variables selection
and modeling

Effective independent variables were selected based on
linear stepwise regression analysis. For the T-E stage, the vari-
ables selected for the FW were S, A96 (705 nm, Fig. 7(d)),
ddA63 (560 nm, Fig. 7(f)), and A89 (683 nm, Fig. 7(d)), and
the variables selected for the DW were S, dA94 (699 nm,
Fig. 7(e)), dT38 (519 nm, Fig. 7(b)), and ddA32 (500 nm,
Fig. 7(f)). For the B-H stage, the variables selected for

the FW were S, ddT102 (725 nm, Fig. 7(i)), A104 (731 nm,
Fig. 7(j)), and ddT69 (619 nm, Fig. 7(i)), and the variables
selected for the DW were T103 (728 nm, Fig. 7(g)), dT61

(593 nm, Fig. 7(h)), dA61 (593 nm, Fig. 7(k)), and ddA102

(725 nm, Fig. 7(l)). Notably, the variable S was not in the
model for the DW of the B-H stage. Thus, the hyperspectral
data were important in the prediction of biomass. Because the
spectral resolution was 3.2 nm, the spectral reflectance of ad-
jacent wavelengths had a high correlation coefficient. There-
fore, the wavelengths of the selected variables could all be
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TABLE II. Performances of 5-fold cross-validation using four independent variables for the T-E and the B-H stages.

Stage Dependent variable Independent variable Prediction set MAPE (%) Prediction set RMSE (g) Modeling set average R2

The T-E stage FW S, A96, ddA63, A89 7.85 4.17 0.940
DW S, dA94, dT38, ddA32 8.98 0.87 0.935

The B-H stage FW S, ddT102, A104, ddT69 8.41 14.51 0.891
DW T103, dT61, dA61, ddA102 12.91 4.38 0.783

attributed to several wavelengths: 500 nm, 519 nm, 560 nm,
593 nm, 619 nm, 683 nm, 702 nm, and 728 nm (Fig. 7). These
wavelengths were mainly in the visible region, except for
728 nm, which was in the red edge position. These results
illustrated that the reflectance of these wavelengths had a rela-
tionship with plant biomass. First, the reflectance of different
parts of the rice plant was not the same. The chlorophyll con-
tent of the stem was lower than the leaves, so the reflectance
of the stem at 400–1000 nm was higher than that of the leaves.
Second, the leaf reflectance was not the same either. Some of
the leaves overlapped, leading to additional reflectance rela-
tive to other parts of the plant. Moreover, as can be observed
in Fig. 7, the selected variables were mostly the first and sec-
ond derivatives of the reflectance at the inflection point of the
derivative curves. Normally, the derivative represents the rate
of change. Thus, the selected independent variables were the
mutation of the reflectance. Horler et al.19 found that the first
derivative of the reflectance of wavelength 725 nm had a lin-
ear relationship with the leaf mass using spectrophotometry.
Previous studies have found that a wavelength of approxi-
mately 550 nm was a reflection valley for green plants. In
our research, the wavelengths 560 nm and 728 nm were very
close to the above results. The other wavelength that our re-
search identified may be an important wavelength for deter-
mining the biomass of individual rice plants. These results
suggest that the reflectance observed at these wavelengths was
the most effective at detecting the biomass of the individual
rice plants.

After selecting four effective independent variables, an
analysis of variance was used to test the difference between
the independent variables and dependent variable. The result
showed that the models were reliable.

D. Modeling validation

To evaluate the performance of our model for biomass
prediction, 5-fold cross-validation was used. The validation
results are shown in Table II, and the scatter plot is shown in
Fig. 8. For the T-E stage, the MAPE and RMSE were 7.85%
and 4.17 g for the FW, respectively, and 8.98% and 0.87 g
for the DW, respectively. For the B-H stage, the MAPE and
RMSE were 8.41% and 14.51 g for the FW, respectively, and
12.91% and 4.38 g for the DW, respectively. The average R2

value for the FW and DW modeling sets were 0.940 and 0.935
for the T-E stage, respectively, and 0.891 and 0.783 for the
B-H stage, respectively. These calculations demonstrate that
these four variables predict the biomass levels well. When
only using the variable S to predict the T-E stage biomass,
the average R2 value for the modeling set was 0.851 for the
FW and 0.884 for the DW. For the B-H stage, the average R2

value for the modeling set was 0.807 for the FW and 0.609
for the DW (data not shown). Clearly, the model containing
added spectral variables produced a better result. Therefore,
additional spectral variables could significantly improve the
accuracy of biomass prediction.

E. Comparisons with other methods

The method that was used to predict above-ground
biomass in the field of remote sensing has been dis-
cussed previously. Boelman et al.20 used the Normal-
ized Difference Vegetation Index (NDVI) and the above-
ground biomass (defined by Eq. (11)) to perform a linear
regression and found that the linear regression coefficient
between the NDVI and the above-ground biomass was
r2 = 0.84. The NDVI was thus used in this study to calcu-
late the linear regression coefficient with the above-ground
biomass. As observed in Table III, the regression coefficient
was very small. Therefore, the NDVI was not suitable for the
prediction of above-ground biomass for individual rice plants

NDV I = (R800 − R660)/(R800 + R660), (11)

where R800 represents the reflectance at 800 nm (a near-
infrared wavelength), and R660 represents the reflectance at
660 nm (a visible red wavelength).

The method used for the analysis of hyperspectral data
was principal component analysis (PCA). Therefore, we used
PCA to analyze the raw data. Then, the principal components
were used to perform linear stepwise regression analysis. Fi-
nally, 5-fold cross-validation was used to test the accuracy of
the model. These results are shown in Table IV. The results
from Table IV are significantly worse than the results pre-
sented in Table II. Therefore, the variable with most of in-
formation may not have been the most effective. Moreover,
the results from Table IV confirmed the results of Sec. III C;
the selected variable had neither the largest nor the smallest
extreme data points.

In addition, we also estimated the biomass of the same
plants using the APPF method (Golzarian et al.4) and
compared the performance of the method with that of ours.

TABLE III. The regression coefficient between NDVI and above-ground
biomass.

Stage Dependent variable Regression coefficient(r2)

The T-E stage FW 0.002
DW 0.02

The B-H stage FW 0.13
DW 0.0008
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FIG. 8. Performance of 5-fold cross-validation using four variables for the (a) and (b) T-E and (c) and (d) B-H stages.

The method of Australian Plant Phenomics Facility (APPF)
is depicted in the following equation:

W = a0 + a1 × (S1 + S2 + Stop) + a2

× (S1 + S2 + Stop) × Tday, (12)

where w represents the weight (g), S1 represents the side pro-
jected area of 0◦, S2 represents the side projected area of
90◦, Stop represents the top projected area, and Tday repre-
sents the plant age in days after planting. The images were
acquired using H-SMART combined with the visible light
technique.21 Table V shows the performance of 5-fold cross-
validation using the APPF method. For the T-E stage, the
average R2 values for the modeling set were 0.878 for the

FW and 0.876 for the DW. For the B-H stage, the average
R2 values for the modeling set were 0.797 for the FW and
0.656 for the DW. These results were close to the results ob-
served using the variable S. The visible light image had a
higher resolution than the hyperspectral image and could add
the topside feature, but it could not provide the spectral in-
formation. In our work, spectral information with a relation-
ship to biomass, not just area information, was added to the
model. Moreover, the total reflectance of the plant ROI may
explain that every point of the plant ROI has a weight, so this
variable can explain the different organs of the plant. There-
fore, we recovered a smaller error and a better result. Over-
all, the HIS provided better performance for individual rice
plants.

TABLE IV. Performance of 5-fold cross-validation with PCA and linear stepwise regression analysis.

Stage Dependent variable Independent variable Prediction set MAPE (%) Prediction set RMSE (g) Modeling set average R2

The T-E stage FW PC1, PC5, PC6, PC2 12.30 6.49 0.868
DW PC1, PC5, PC2, PC7 11.81 1.21 0.890

The B-H stage FW PC3, PC1, PC8, PC2 9.79 16.28 0.879
DW PC3, PC1, PC2, PC82 13.60 4.65 0.786
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TABLE V. Performances of 5-fold cross-validation using the APPF method.

Stage Dependent variable Independent variable Prediction set MAPE (%) Prediction set RMSE (g) Modeling set average R2

The T-E stage FW S1 + S2 + Stop, (S1 + S2 + Stop) × Tday 11.25 6.18 0.878
DW S1 + S2 + Stop, (S1 + S2 + Stop) × Tday 12.41 1.25 0.876

The B-H stage FW S1 + S2 + Stop, (S1 + S2 + Stop) × Tday 13.66 20.15 0.797
DW S1 + S2 + Stop, (S1 + S2 + Stop) × Tday 17.16 5.62 0.656

V. CONCLUSION

This study was performed to develop a HIS for the accu-
rate prediction of rice above-ground biomass in early stages
of growth. The structure of the system and the influence of
various parameters on the camera acquisition speed were es-
tablished, and we obtained accurate predictions for the above-
ground biomass of rice plants with this system. In addi-
tion, the system also has the potential to characterize other
phenotypic traits (e.g., green leaf area) or physiological pa-
rameters (e.g., chlorophyll) of cereal plants nondestructively.
However, these results were produced in a single season.
Therefore, these results should be replicated in future studies
across several years to ascertain the robustness of this method
for the prediction of above-ground biomass for individual rice
plants.
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