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The traits of rice panicles play important roles in yield assessment, variety classification, rice breeding, and cultivation management.
Most traditional grain phenotyping methods require threshing and thus are time-consuming and labor-intensive; moreover, these
methods cannot obtain 3D grain traits. In this work, based on X-ray computed tomography, we proposed an image analysis method
to extract twenty-two 3D grain traits. After 104 samples were tested, the R2 values between the extracted and manual measurements
of the grain number and grain length were 0.980 and 0.960, respectively. We also found a high correlation between the total grain
volume and weight. In addition, the extracted 3D grain traits were used to classify the rice varieties, and the support vector machine
classifier had a higher recognition accuracy than the stepwise discriminant analysis and random forest classifiers. In conclusion, we
developed a 3D image analysis pipeline to extract rice grain traits using X-ray computed tomography that can provide more 3D
grain information and could benefit future research on rice functional genomics and rice breeding.

1. Introduction

Rice is one of the most important food crops worldwide,
especially in China [1–3]. There is an urgent need to produce
high-yield and resistant rice to cope with population growth,
climate change, and increased numbers of pests and diseases
[4–6]. Phenotypes have been shown to greatly accelerate the
process of rice genetics and breeding [7, 8]. The rice panicle,
an important agronomic component [9], is closely associated
with yield. In particular, the number of grains per panicle
directly determines rice yield [10]. Thus, accurately quantify-
ing the grain number and grain size per panicle is a key step
in rice phenotyping [11]. Traditionally, the phenotyping of
grain traits is manually performed after threshing; unfortu-
nately, this is an incredibly time-consuming and labor-
intensive process [12].

An image-based analysis is widely used in the measure-
ment of grain traits. Yang developed a machine vision-based,
integrated, and labor-free facility for automatically threshing
panicles and evaluating rice yield-related traits [13]. Liu et al.
combined X-ray digital radiography with a CCD camera to
distinguish between filled and unfilled rice spikelets [14].
Whan et al. reported a fast, low-cost method for grain size
and color measurements using a scanner [15]. These
methods require manual threshing and thus are also time-
consuming. Recently, some researchers have proposed tech-
niques known as panicle measurement methods. Gong et al.
proposed using the projected area and contour of a grain to
build a prior edge wavelet correction model to approximately
count the number of grains per panicle [16]. Zhao et al. estab-
lished a method integrating image analysis with a 5-point cal-
ibration model to achieve the fast estimation of the number
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of spikelets per panicle [17]. Wu et al. reported a method that
was used to recognize and quantify the number of grains per
panicle using deep learning [18]. Adam et al. designed a pan-
icle trait phenotyping tool [19] that can be used to measure a
variety of traits, including the panicle length, the number of
branches, the order of branches, the number of grains, and
the grain size. Jhala et al. proposed a method to study rice
panicle development through the projection of images of rice
panicles taken by X-ray computed tomography [20]. These
methods require the sample to be manually spread out before
imaging and thus suffer from various shortcomings; for
example, the measurement accuracy depends on manually
preprocessing the panicle, which is time-consuming. In addi-
tion, these methods are capable of extracting 2D traits but
lack the ability to measure 3D grain traits, such as grain vol-
ume and grain thickness.

Some 3D nondestructive measurement methods, such as
X-ray microcomputed tomography (CT) and magnetic reso-
nance imaging (MRI), could be used to noninvasively obtain
the internal structure information of a sample [21–24]. Kar-
unakaran et al. identified wheat grains damaged by the red
flour beetle using X-ray images [25]. Recently, a method
based on X-ray computed tomography has been successfully
applied to the measurement of 3D grain traits. Strange auto-
matically estimated the morphometry of a wheat grain from
computed tomography [26]. Xiong et al. developed a 3D
morphological method to complete the processing of com-
puted tomography images of wheat spikes [27]. Hughes
et al. achieved the nondestructive and high-content analysis
of wheat grain traits using X-ray microcomputed tomogra-
phy [28]. Le et al. further analyzed the morphological struc-
tural characteristics of wheat grains by microcomputed
tomography [29]. As seen from the above, methods based
on X-ray computed tomography are effective and nonde-
structive approaches for analyzing grain traits. To the best
of our knowledge, few studies have been performed on mea-
suring the 3D traits of rice grains. Su and Chen proposed a
method for measuring the traits of rice panicles based on
3D microfocus X-ray computed tomography [30] but
extracted only the number of spikelets. Nevertheless, rice
grain traits, including the grain size, volume, and surface
area, are of great significance for research on rice genetics
and rice breeding. Therefore, a new method is needed to
measure the 3D traits of rice grains.

This study proposed a high-throughput 3D image
processing pipeline for extracting 22 grain traits based on
X-ray CT. In addition, the relationships between the
extracted traits and grain weight were studied, and these
traits were used to classify rice varieties.

2. Materials and Methods

2.1. Experimental Materials and Image Acquisition. In this
study, during the summer of 2019, one wild type (ZH11)
and eight mutants produced by EMS mutagenesis were
grown in Hainan Province. After their harvest, 24 panicles
of the wild type and 10 panicles of each mutant, reaching a
total of 104 panicles, were randomly selected for further anal-
ysis. The X-ray CT scanning system used in this study was

developed by the Institute of Genetics and Developmental
Biology, Chinese Academy of Sciences (IGDB, CAS, Beijing,
China). The voltage and current were set as 90 kV and
3.2mA, respectively. The panicle was placed in a plastic
holder during the scan. The system was operated in fast
and continuous scan mode, and 450 projection images were
collected over a 360° rotation of each sample in 0.8° steps,
which generated a 3D volume with a resolution of ~0.3mm
(512 × 512 × 450 voxels, unsigned 16 bits integers). The CT
reconstruction is achieved by Shennong-CT V1.0 (IGDB,
CAS, Beijing, China). The total scanning and reconstruction
time was ~2 minutes for each panicle. After the CT scanning
was complete, all the samples were threshed manually,
dehulled, and finally measured by a yield traits scorer (YTS)
[13] to extract grain number, grain length, and grain weight.

2.2. Image Processing and Analysis Pipeline for Extracting
Rice Grain Traits. We developed a robust pipeline for auto-
matically processing CT images and extracting rice grain
traits. A flow chart of the main algorithm used to extract rice
grain traits, including the preprocessing of images and
extraction of traits, is shown in Figure 1. The workflow is
described in detail as follows: (1) After image reconstruction,
the CT images are saved slice by slice along the z-direction in
DICOM format (Figure 1(a)). (2) The holder is removed
(Figures 1(b)–1(h)). (3) 3D segmentation of rice gains is per-
formed (Figures 1(h)–1(k)). (4) The number of grains is
counted (Figure 1(l)). (5) Individual grain traits are calcu-
lated (Figure 1(m)). (6) The grain size is calculated using
the principal component analysis (PCA) transform
(Figure 1(n)). (7) The grain surface area is calculated by sur-
face reconstruction (Figure 1(o)). All image processing and
trait extraction procedures are performed through MATLAB
2018a, and the source codes of all the scripts are available
online in Supplementary File 3 or at the following link:
http://plantphenomics.hzau.edu.cn/download_checkiflogin_
en.action, or https://github.com/cancanzc/ricePanicle_
grainTraits_Processing. The usage instructions of the 3D
image analysis pipeline are available in Supplementary File
2 and demonstrated in Supplementary Video 1.

2.3. Holder Clearance. The original CT data were stored slice
by slice in DICOM format, and each sample was 226 mega-
bytes in size. Each rice panicle was fixed in a holder when
scanned. The holder must be removed for further processing
of the 3D image. However, the rice panicle and the inner edge
of the holder were close to each other during the scanning
process and exhibited attenuation characteristics similar to
X-ray absorption, which led to the complete overlap of their
gray-level histograms; hence, it was difficult to remove the
holder from the 3D image using a fixed grayscale threshold.
Here, the following method of finding the holder edge was
used to solve this problem: (1) first, a binary image was
acquired (Figure 1(b)); (2) all the inner edges were detected
for each slice along the z-axis (Figure 1(c)), and the appropri-
ate threshold was selected to obtain the inner edge of the
holder (Figure 1(d)); (3) the interior of the holder region
was filled (Figure 1(e)); (4) a morphological closing operation
was performed (Figure 1(f)); (5) the complete holder was
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obtained to generate a mask (Figure 1(g)); and (6) the mask
was applied to the original image (Figure 1(a)) to remove
the holder (Figure 1(h)).

2.4. 3D Image Processing. After removing the holder, grains,
branches, impurities, and background remain in the 3D
image (Figure 1(h)). Their combined gray-level histogram,
which is bimodal in nature, is shown in Figure 1(i). The
brighter peaks are grains, while the darker peaks are the back-
ground. The maximum variance between classes (Otsu) is an
adaptive threshold determination method, which is mainly
suitable for the segmentation of images with a large differ-
ence between foreground and background. Thus, the global
adaptive segmentation method based on Otsu [31] was used
to segment the grains (Figure 1(j)). The Otsu threshold
(Figure 1(i)) was calculated by the Otsu method.

There is a trade-off between the image resolution and
field of view. Therefore, ensuring a large imaging field of view
at the expense of a low image resolution enabled us to scan
large samples, which also increased the possibility for objects
to be connected. To process connected grains, a separation
algorithm was developed based on a watershed method
applied to the distance transform of the binary image [32].
The watershed algorithm has been suggested to be an
effective image region segmentation method, and its main
use is to regions based on the gradient of the gray level image
[33, 34]. The watershed algorithm used in this article was
improved, and the detailed steps are as follows: (1) For each
white pixel in a 3D image, the distance to the nearest black
pixel was computed using a chessboard method for distance
measurements. (2) Local maximum regions were detected
by selecting an appropriate threshold related to the radius
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of the object. The regions with a distance less than threshold
should belong to the same object, and these regions should be
merged together. (3) With this improved computed distance
map, the standard watershed algorithm was applied to find
dividing contour lines (Figure 1(k)).

2.5. Grain Size Extraction. PCA [35] was applied to calculate
the grain size. The principle of PCA is to transform data from
the original three-dimensional space to another three-
dimensional space by an orthogonal transform, the direc-
tions of which are determined by the three directions with
the largest variance of data. The PCA method is described
in detail as follows: (1) the grain is defined in the original
coordinate space (x-y-z) (Figure 2(a)); (2) the 3D coordinates
of the centers of all voxels of the grain are extracted as input
features, and the eigenvectors (v1, v2, and v3) are calculated
(Figure 2(b)); (3) Projecting the grain toward the eigenvec-
tors, and the grain is transformed into a new coordinate
space (x1-y1-z1) (Figure 2(c)); and (4) the grain length,
width, and thickness are calculated by computing min and
max coordinates of transformed voxels along each dimen-
sion, as shown in Figure 2(d).

2.6. Grain Volume, Surface Area, and Grain Number Count.
After grain segmentation, the connected components were
found. Then, the grain volume was calculated simply by
counting the number of all voxels in each connected domain.
The surface of each grain was jagged and not smooth. Thus,

the surface of the grain was first reconstructed by using
marching cubes [36, 37], then its surface area is computed
by summing area of individual triangles. The total number
of grains could also be directly counted. The definitions and
abbreviations of the 22 phenotypic traits (grain number, grain
size, 3D grain architectures, and grain density) are shown in
Table 1. All of the 3D image analysis pipelines was developed
using the MATLAB 2018a software (MathWorks, USA).

2.7. Stepwise Discriminant Analysis Statistical Method. Step-
wise discriminant analysis (SDA) is an effective classification
method [38] that involves the selection of features and the
establishment of discriminant functions. For feature selec-
tion, the specific steps are as follows: All traits are selected
as the input variables of the algorithm. There are no variables
in the model at the beginning. First, the SDA algorithm will
select the variable with the largest discriminant ability. Then,
the second variable will be required to have the largest dis-
criminant ability among the remaining variables. Because of
the interrelationship among the different variables, the previ-
ously selected variable may lose its significant discrimination
ability after selecting a new variable. Thus, every time a new
variable is chosen, we must inspect the discrimination abili-
ties of all previously selected variables to find all disabled var-
iables and remove them. With this process, we find new
variables until there are no variables that meet the require-
ments. In this study, stepwise discriminant analysis was per-
formed by using the SPSS v.24 software (SPSS, USA), and the
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conditions for the probability of entry and deletion were set
to 0.05 and 0.1, respectively.

2.8. Support Vector Machine Statistical Method. The support
vector machine (SVM) is a pattern recognition method based
on the principle of minimum structural risk [39]. The main
idea is to map the data in the sample space to a higher-
dimensional space and find a hyperplane in the higher-
dimensional space so that the distances between the
hyperplane and the different sample sets are as large as pos-
sible to ensure the minimum classification error rate. The
radial basis function (RBF) is chosen as the kernel function
of the support vector machine. The selection of the penalty
coefficient c and kernel function parameter γ will affect the
recognition ability of the support vector machine algorithm.
Particle swarm optimization (PSO) is a swarm intelligence
optimization algorithm [40] that can quickly find the optimal
values of c and γ in a large range to improve the search effi-
ciency and recognition accuracy of the algorithm. In this
study, the implementation of the SVM algorithm is based
on the MATLAB libsvm-3.23 toolbox.

2.9. Random Forest Statistical Method. Decision trees are a
common class of machine learning algorithms based on the
structure of a tree for making decisions [41]. A random forest
(RF) consists of multiple decision trees, and there is no corre-
lation between each pair of decision trees. Random forests
employ the random selection of attributes in the training
process of the decision tree. For each node of the decision

tree, a subset of k attributes is randomly selected from the
node attribute set, and then an optimal attribute is selected
from the subset for division. Each sample subset is used to
train a decision tree as a classifier. For an input sample, each
tree will have a classification result, and the random forest
will specify the category with the highest number of votes
as the final classification result. In this study, the open-
source random forest matlab toolkit [42] was used to build
the random forest classifier.

3. Results and Discussion

3.1. Grain Segmentation and Phenotypic Trait Extraction.We
developed a robust pipeline for automatically processing CT
images and extracting 22 rice grain traits. The segmentation
examples for the wild type and mutants are shown in
Figure 3. The results of the pseudocolor image demonstrate
that the grains were well recognized. After image segmenta-
tion, we extracted 22 phenotypic traits, including the grain
number, grain shape, and grain size. The definitions and
abbreviations of the phenotypic traits are shown in
Table 1. An example of the segmentation result is shown
in Supplementary Video 2.

3.2. Performance Evaluation of the Grain Trait Extraction. In
the experiment, a total of 104 panicles were measured both
automatically using X-ray CT and using a yield traits scorer
(YTS) [13]. Regression analysis was applied to evaluate the
measurement accuracy. The R2 values (formula (1)) between

Table 1: Digitally extracted results of 22 traits per panicle by X-ray CT.

Traits Abbreviation

Grain number Grain number GN

Grain shape

Mean value of grain length MGL

Standard deviation of grain length SGL

Mean value of grain width MGW

Standard deviation of grain width SGW

Mean value of grain thickness MGT

Standard deviation of grain thickness SGT

Mean value of grain length/width ratio MLWR

Standard deviation of grain length/width ratio SLWR

Mean value of grain width/thickness ratio MWTR

Standard deviation of grain width/thickness ratio SWTR

Mean value of equivalent diameter MED

Mean value of solidity MS

Grain size

Total grain volume TGV

Mean value of grain volume MGV

Standard deviation of grain volume SGV

Total grain surface area TGS

Mean value of grain surface area MGS

Standard deviation of grain surface area SGS

Mean value of convex hull volume MCHV

Standard deviation of convex hull volume SCHV

Grain density Mean value of grain grayscale value MGG
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the CT and YTS measurements for the grain number and
grain length were 0.980 and 0.960, respectively (Figure 4(a)–
4(b)), and the root mean square error (RMSE, formula (2))
values of the CTmeasurements versus the YTSmeasurements
for these two traits were 6.2 and 0.15mm, respectively. The
mean absolute percentage error (MAPE, formula (3)) of the
automatic versus YTS measurements for the grain number
and grain length was 4.65% and 2.41%, respectively. All the
phenotypic data are shown in Supplementary File 1.

R2 = 1 − ∑i xi − yið Þ2
∑i xi − �yð Þ2

ð1Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i xi − yið Þ2
n

r

ð2Þ

MAPE = 1
n
〠

i

xi − yij j
xi

× 100% ð3Þ

Where n is the total number of measurements, xi is YTS mea-
surements, yi is CTmeasurements, and �y is the mean value of
the CT measurements.

3.3. Correlation Analysis between the 3D Grain Traits and
Grain Weight. After a total of 22 traits were extracted from
the 104 panicles, we explored the correlations between these
traits. The correlation matrix among all the traits is shown in
Figure 5. It can be seen from this figure that the total volume
has strong correlations with the total surface area and the
number of grains. In addition, the individual grain volume

has relatively high correlations with grain surface area, grain
width, and grain thickness and a relatively low correlation
with grain length, which indicates that grain volume is more
affected by grain width and grain thickness than by grain
length. The correlations between the surface area and the
length, width, and thickness of individual grains are similar,
which indicates that grain length, width, and thickness have
the same effect on the surface area of a grain.

Furthermore, to study the relationships between all the
traits and the total grain weight, we performed stepwise dis-
criminant analysis (SDA). The first feature selected is total
grain volume (TGV), and the remaining selected features
include GN, SGW, MGG, and SGL (see Table 1 for their def-
initions). When the five selected features were used, up to
98.6% of the variance in grain weight could be explained
(Figure 6(a)). In addition, the R2 values between the total vol-
ume, grain number, and total surface area and the total grain
weight were all above 0.94 Figures 6(b)–6(d).

3.4. Variety Classification Results. In the experiment, we
established three different models, namely, SDA, SVM, and
RF models, to classify the rice varieties. Using stepwise dis-
criminant analysis, a total of 13 traits (MLWR, GN, MGV,
MGW, MGL, SWTR, MED, TGS, SGV, MGS, TGV, MGT,
SGW, see Table 1 for their definitions) were selected for fur-
ther classification analysis. Using two discriminant functions
generated by the SDA algorithm, the grain variety classifica-
tion results are visualized in Figure 7, which shows that most
varieties were well classified.
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Segmentation results of the wild type (a) and mutants (c), respectively. (b1, b2) The details in the dashed box in b. (d1, d2) The details in
the dashed box in d.
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To provide a convincing result in the case of limited sam-
ples, we used leave-one-out cross-validation (LOO-CV) to
evaluate the established model. Leave-one-out cross-
validation means that the sample was divided into 104
groups. For each test, one group was taken as the test set,
while the rest were used as the training set. A total of 104 tests

were performed, and their average value was used as the final
classification accuracy of the model. The average recognition
accuracies of the leave-one-out cross-validation method for
the SDA, SVM, and RF models were 92.3%, 94.2%, and
92.3%, respectively. A comparison of the cross-validation
results using the three models is shown in Table 2. We found
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that the SVM model was the best among the three models
with 94.2% recognition accuracy.

3.5. Overlapping Grain Segmentation Based on the Improved
Distance Transform Watershed Algorithm. After segmenta-
tion, there is still some overlap between the grains. The
improved watershed algorithm was used to separate overlap-
ping grains (Figure 8). The top images represent the results of
directly using the common watershed segmentation algo-
rithm based on the distance transform, while the bottom
images reflect the segmentation results using the improved
method. The red rectangle in the figure indicates that directly
using the traditional watershed algorithm will lead to the
detection of multiple maxima within the grain, so separation
will ultimately occur inside the grain. In contrast, our method
separates grains only where they overlap.

3.6. Segmentation Results of Whole Rice Panicles. To demon-
strate the robustness and broad applicability of our method,
we also implemented the segmentation of all rice panicles
in a rice plant using X-ray CT (Figure 9 and Supplementary

Video 3). To ensure that all the rice panicles were in the CT
field of view, the panicles were wrapped by using a thin roll
of paper when scanning. The segmentation results show that
our method can accurately segment all the panicles of a rice
plant and could be used to monitor the 3D dynamic develop-
ment of panicles in the future.

3.7. The Comparison with Other 3D CT Image Analysis
Pipelines to Extract Grain Traits. At present, most of the
existing 3D CT image analysis methods to extract grain traits
aimed at the wheat grain [26–29]. In this work, the time con-
sumption of CT scanning is set as 18 seconds, which leads to
the spatial resolution of CT scanning for rice panicles
(~300μm) is lower than the spatial resolution of CT scanning
for wheat spikes (68.8μm), thus the existing image analysis
methods [26–28] are difficult to be used for the rice panicle
image processing in our work. In addition, there is more seri-
ous adhesion between rice grains, and the traits extracted
from wheat grain are not the same as those of rice grain.
Therefore, this paper proposes an image processing and anal-
ysis method which is suitable for rice panicle image
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processing and grain 3D traits extraction, and it has been ver-
ified that this method can be extended to the whole rice grain
trait measurement, which will promote the research of rice
panicle dynamic development and rice nondestructive yield
estimation in future.

4. Conclusion

This study proposed a novel method for measuring twenty-
two 3D rice grain traits using X-ray computed tomography.
The R2 values between the CT and YTS measurements of
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Figure 8: Overlapping grain segmentation. The top images represent the results of directly using traditional watershed segmentation based on
a distance transform. The bottom images are the segmentation results using the improved method.

Table 2: Comparison results of the different model for rice varieties classification (%).

Model 1 2 3 4 5 6 7 8 9 Average

SDA 95.8 100.0% 100.0% 90.0 80.0 100.0% 70.0 100.0% 90.0 92.3

SVM 95.8 100.0% 90.0 90.0 100.0% 90.0 90.0 100.0% 90.0 94.2

RF 95.8 100.0% 70.0 100.0% 100.0% 100.0% 90.0 80.0 90.0 92.3
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the grain number and grain length were 0.980 and 0.960,
respectively; that is, we found that the R2 value between the
total grain volume and grain weight could reach as high as
98.0%. In short, compared with 2D imaging methods, the
proposed method has several advantages; for example, no
threshing is required, and the proposed technique can extract
new 3D grain traits, such as 3D grain volume and grain den-
sity, reflected the grain size and grain quality, respectively. In
addition, using the measured traits to build models effectively
achieved the classification of rice varieties. In future, com-
bined with genome-wide associate study or QTL analysis,
the new 3D grain traits would provide more valuable infor-

mation for the genetic architecture of rice grains, which will
promote rice functional genomics and rice breeding.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

WH, CZ, and WY designed the image analysis pipeline, per-
formed the experiments, analyzed the data, and wrote the
manuscript. YJ designed the X-ray CT. CH, QL, and LX

(a)

(c)

(b)

(d)

Figure 9: Visualization of the segmentation results of all panicles for a whole rice plant. Results of segmenting all the rice panicles in a rice
plant by the proposed method. (a, c) Original images of the rice panicles from the side and top, respectively, and (b, d) the corresponding
segmentation results.

10 Plant Phenomics



assisted in experiment design and data analysis. WY and FC
supervised the project and designed the research.

Acknowledgments

This work was supported by grants from the National Key
Research and Development Program (2016YFD0100101-
18), the National Natural Science Foundation of China
(31770397), the Fundamental Research Funds for the Central
Universities (2662017PY058), and Hubei Research and
Development Innovation Platform Construction Project.
We also thank the rice materials provided by Porf. Yunhai
Li from Institute of Genetics and Developmental Biology
Chinese Academy of Sciences, Beijing, China.

Supplementary Materials

Supplementary File 1: Original phenotypic data of all 104 rice
panicles. Supplementary File 2: Usage instructions for the
3D image analysis pipeline. Supplementary File 3: Source
code of the 3D image analysis pipeline. Supplementary
Video 1: Guidelines of the operation procedure for the 3D
image analysis pipeline. Supplementary Video 2: Example
segmentation result of a single panicle. Supplementary Video
3: Segmentation results of all the panicles in one rice plant
(Supplementary Materials)

References

[1] M. Farooq, K. H. M. Siddique, H. Rehman, T. Aziz, D. J. Lee,
and A. Wahid, “Rice direct seeding: experiences, challenges
and opportunities,” Soil and Tillage Research, vol. 111, no. 2,
pp. 87–98, 2011.

[2] International Rice Genome Sequencing Project and T. Sasaki,
“The map-based sequence of the rice genome,” Nature,
vol. 436, no. 7052, pp. 793–800, 2005.

[3] J. Chen, H. Gao, X. M. Zheng et al., “An evolutionarily con-
served gene, FUWA, plays a role in determining panicle archi-
tecture, grain shape and grain weight in rice,” Plant Journal,
vol. 83, no. 3, pp. 427–438, 2015.

[4] T. Mark and P. Langridge, “Breeding technologies to increase
crop production in a changing world,” Science, vol. 327,
no. 5967, pp. 818–822, 2010.

[5] J. Luck, M. Spackman, A. Freeman et al., “Climate change and
diseases of food crops,” Plant Pathology, vol. 60, no. 1, pp. 113–
121, 2011.

[6] Y. Zhang, M. Liu, M. Dannenmann et al., “Benefit of using bio-
degradable film on rice grain yield and N use efficiency in
ground cover rice production system,” Field Crops Research,
vol. 201, pp. 52–59, 2017.

[7] W. Yang, Z. Guo, C. Huang et al., “Combining high-
throughput phenotyping and genome-wide association studies
to reveal natural genetic variation in rice,” Nature Communi-
cations, vol. 5, no. 1, 2014.

[8] N. Shakoor, S. Lee, and T. Mockler, “High throughput pheno-
typing to accelerate crop breeding and monitoring of diseases
in the field,” Current Opinion in Plant Biology, vol. 38,
pp. 184–192, 2017.

[9] S. Crowell, A. X. Falcão, A. Shah, Z. Wilson, A. J. Greenberg,
and S. R. McCouch, “High-resolution Inflorescence phenotyp-

ing using a novel image-analysis pipeline, PANorama,” Plant
Physiology, vol. 165, no. 2, pp. 479–495, 2014.

[10] Y. Xing and Q. Zhang, “Genetic and molecular bases of rice
yield,” Annual Review of Plant Biology, vol. 61, pp. 421–442,
2010.

[11] C. Huang, W. Yang, L. Duan et al., “Rice panicle length mea-
suring system based on dual-camera imaging,” Computers
and Electronics in Agriculture, vol. 98, pp. 158–165, 2013.

[12] T. Liu, W. Wu, W. Chen et al., “A shadow-based method to
calculate the percentage of filled rice grains,” Biosystems Engi-
neering, vol. 150, pp. 79–88, 2016.

[13] L. Duan, W. Yang, C. Huang, and Q. Liu, “A novel machine-
vision-based facility for the automatic evaluation of yield-
related traits in rice,” Plant Methods, vol. 7, no. 1, pp. 44–56,
2011.

[14] L. Duan,W. Yang, K. Bi, S. Chen, Q. Luo, and Q. Liu, “Fast dis-
crimination and counting of filled/unfilled rice spikelets based
on bi-modal imaging,” Computers and Electronics in Agricul-
ture, vol. 75, no. 1, pp. 196–203, 2011.

[15] A. P. Whan, A. B. Smith, C. R. Cavanagh et al., “GrainScan: a
low cost, fast method for grain size and colour measurements,”
Plant Methods, vol. 10, no. 1, p. 23, 2014.

[16] L. Gong, K. Lin, T. Wang et al., “Image-Based on-panicle rice
[Oryza sativa L.] grain counting with a prior edge wavelet cor-
rection model,” Agronomy, vol. 8, no. 6, p. 91, 2018.

[17] S. Zhao, J. Gu, Y. Zhao, M. Hassan, Y. Li, and W. Ding, “A
method for estimating spikelet number per panicle: Integrat-
ing image analysis and a 5-point calibration model,” Scientific
Reports, vol. 5, no. 1, 2015.

[18] W. Wu, T. Liu, P. Zhou et al., “Image analysis-based recogni-
tion and quantification of grain number per panicle in rice,”
Plant Methods, vol. 15, no. 1, 2019.

[19] F. AL-Tam, H. Adam, A. Anjos et al., “P-TRAP: a panicle trait
phenotyping tool,” BMC Plant Biology, vol. 13, no. 1, 2013.

[20] V. M. Jhala and V. S. Thaker, “X-ray computed tomography to
study rice (Oryza sativa L.) panicle development,” Journal of
Experimental Botany, vol. 66, no. 21, pp. 6819–6825, 2015.

[21] S. Jahnke, M. I. Menzel, D. van Dusschoten et al., “Combined
MRI–PET dissects dynamic changes in plant structures and
functions,” Plant Journal, vol. 59, no. 4, pp. 634–644, 2009.

[22] H. Schulz, J. A. Postma, D. van Dusschoten, H. Scharr, and
S. Behnke, “Plant root system analysis from MRI images,” in
Computer Vision, Imaging and Computer Graphics, G. Csurka,
M. Kraus, R. S. Laramee, P. Richard, and J. Braz, Eds., vol. 359
of Communications in Computer and Information Science, ,
pp. 411–425, Springer, 2013.

[23] X. Luo, X. Zhou, and X. Yan, “Visualization of plant root mor-
phology in situ based on X-ray CT imaging technology,” in
2004 ASAE Annual Meeting, pp. 3078–3078, Ottawa, Canada,
2004.

[24] H. Zhifeng, G. Liang, L. Chengliang, H. Yixiang, and
N. Qingliang, “Measurement of rice tillers based on magnetic
resonance imaging,” IFAC-PapersOnLine, vol. 49, no. 16,
pp. 254–258, 2016.

[25] C. Karunakaran, D. S. Jayas, and N. D. G. White, “Identifica-
tion of wheat kernels damaged by the red flour beetle using
X-ray images,” Biosystems Engineering, vol. 87, no. 3,
pp. 267–274, 2004.

[26] H. Strange, R. Zwiggelaar, C. Sturrock, S. J. Mooney, and J. H.
Doonan, “Automatic estimation of wheat grain morphometry

11Plant Phenomics

http://downloads.spj.sciencemag.org/plantphenomics/2020/3414926.f1.zip


from computed tomography data,” Functional Plant Biology,
vol. 42, no. 5, pp. 452–459, 2015.

[27] B. Xiong, B. Wang, S. Xiong, C. Lin, and X. Yuan, “3D Mor-
phological Processing for Wheat Spike Phenotypes Using
Computed Tomography Images,,” Remote Sensing, vol. 11,
no. 9, p. 1110, 2019.

[28] N. Hughes, K. Askew, C. P. Scotson et al., “Non-destructive,
high-content analysis of wheat grain traits using X-ray micro
computed tomography,” Plant Methods, vol. 13, no. 1, pp. 1–
16, 2017.

[29] T. D. Q. Le, C. Alvarado, C. Girousse, D. Legland, and
A.-L. Chateigner-Boutin, “Use of X-ray micro computed
tomography imaging to analyze the morphology of wheat
grain through its development,” Plant Methods, vol. 15,
no. 1, 2019.

[30] L. Su and P. Chen, “A method for characterizing the panicle
traits in rice based on 3Dmicro-focus X-ray computed tomog-
raphy,” Computers and Electronics in Agriculture, vol. 166,
p. 104984, 2019.

[31] H. Wu, H. Zhou, T. Zhang, X. Chen, Y. Zhou, and Z. Wang,
Segmentation Image Using Dynamic Combined Global Thresh-
old Based on OTSU, Journal of Atmospheric and Environmen-
tal Optics, 2012.

[32] Q. Chen, X. Yang, and E. M. Petriu, “Watershed segmentation
for binary images with different distance transforms,” in The
3rd IEEE International Workshop on Haptic, Audio and Visual
Environments and Their Applications, pp. 111–116, Ottawa,
Ontario, Canada, 2004.

[33] Q. Pang, C. Yang, Y. Fan, and Y. Chen, “Overlapped Cell
Image Segmentation Based on Distance Transform,
pp. 9858–9861, World Congress on Intelligent Control &
Automation, IEEE, Dalian, 2006.

[34] P. Soille, Morphological Image Analysis, Springer, second edi-
tion, 2003.

[35] H. Abdi and L. J. Williams, “Principal component analysis,”
Wiley Interdisciplinary Reviews Computational Statistics,
vol. 2, no. 4, pp. 433–459, 2010.

[36] N. Amenta and M. Bern, “Surface reconstruction by Voronoi
filtering,” Discrete & Computational Geometry, vol. 22, no. 4,
pp. 481–504, 1999.

[37] L. William and C. Harvey, “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm,” in Proceedings of
the 14th Annual Conference on Computer Graphics and Inter-
active Techniques, pp. 163–169, New York, NY, USA, 1987.

[38] C. Simó, P. J. Martín-Alvarez, C. Barbas, and A. Cifuentes,
“Application of stepwise discriminant analysis to classify com-
mercial orange juices using chiral micellar electrokinetic
chromatography-laser induced fluorescence data of amino
acids,” Electrophoresis, vol. 25, no. 16, pp. 2885–2891, 2004.

[39] H. Byun and S. W. Lee, “Applications of support vector
machines for pattern recognition: a survey,” Lecture Notes in
Computer Science, vol. 2388, pp. 213–236, 2002.

[40] G. Venter and J. Sobieszczanski-Sobieski, “Particle swarm
optimization,” AIAA Journal, vol. 41, no. 8, pp. 1583–1589,
2003.

[41] P. Jain, J. M. Garibaldi, and J. D. Hirst, “Supervised machine
learning algorithms for protein structure classification,” Com-
putational Biology and Chemistry, vol. 33, no. 3, pp. 216–223,
2009.

[42] A. Liaw and M. Wiener, “Classification and regression by ran-
dom forest,” R News, vol. 2, no. 3, pp. 18–22, 2001.

12 Plant Phenomics


	2. Materials and Methods
	2.1. Experimental Materials and Image Acquisition
	2.2. Image Processing and Analysis Pipeline for Extracting Rice Grain Traits
	2.3. Holder Clearance
	2.4. 3D Image Processing
	2.5. Grain Size Extraction
	2.6. Grain Volume, Surface Area, and Grain Number Count
	2.7. Stepwise Discriminant Analysis Statistical Method
	2.8. Support Vector Machine Statistical Method
	2.9. Random Forest Statistical Method

	3. Results and Discussion
	3.1. Grain Segmentation and Phenotypic Trait Extraction
	3.2. Performance Evaluation of the Grain Trait Extraction
	3.3. Correlation Analysis between the 3D Grain Traits and Grain Weight
	3.4. Variety Classification Results
	3.5. Overlapping Grain Segmentation Based on the Improved Distance Transform Watershed Algorithm
	3.6. Segmentation Results of Whole Rice Panicles
	3.7. The Comparison with Other 3D CT Image Analysis Pipelines to Extract Grain Traits

	4. Conclusion
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

